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ABSTRACT

This paper explores the performance of the tenth-order

central spatial scheme and derives the accompanying energy-

norm stable summation-by-parts (SBP) boundary operators.

The objective is to employ the resulting tenth-order spatial

differencing with the stable SBP boundary operators as a

base scheme in the framework of adaptive numerical dissi-

pation control in high order multistep filter schemes of Yee

et al. (1999), Yee and Sjögreen (2002, 2005, 2006, 2007),

and Sjögreen and Yee (2004). These schemes were designed

for multiscale turbulence flows including strong shock waves

and combustion.

INTRODUCTION

The accuracy and stability of the overall high order

central difference operators employing the traditional ways

of implementing numerical boundary conditions by reduc-

ing the orders of the central scheme near the non-periodic

boundary are greatly compromised. In the 80’s and 90’s,

major effort was placed on the development of high order

shock-capturing schemes and high order compact spatial

schemes. Traditional high order central schemes were con-

sidered neither stable nor robust enough to be used in a more

practical setting. In the work of Kriess and Scherer (1974,

1977), Strand (1994), Olsson (1995), Mattsson (2003), Svärd

(2004) and references cited therein, high order finite dif-

ference operators with summation-by-parts (SBP) stable

energy estimates were derived for the first derivative approx-

imations for centered difference operator (for the interior

grid points) of orders up to eight. The use of standard

central spatial schemes thus regained its momentum in the

mid and late 90’s. The use of these SBP central schemes

of order up to eight have been used with much success as

the spatial base scheme in the adaptive numerical dissipa-

tion control multistep high order filter schemes of Yee and

Sjögreen (1999,2002, 2005, 2006, 2007) and Sjögreen and Yee

(2002, 2003, 2004). Test examples concentrated mainly on

sixth-order or lower SBP central spatial base schemes. Im-

proved accuracy over standard high order shock-capturing

schemes was obtained for multiscale shock/turbulence in-

teractions. From here on, the use of the phrase, e.g., ”SBP
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central schemes of tenth-order” to mean the use of the tenth-

order centered differencing interior scheme (for the interior

grid points) with the accompanying stable SBP boundary

operators that are usually much lower than the interior

scheme.

In this work, the tenth-order central spatial differenc-

ing with stable SBP boundary operators are derived with

numerical examples. The next section illustrates the perfor-

mance of the tenth-order scheme for problems with periodic

physical boundaries. The SBP boundary operators for the

tenth-order centered differencing are derived with a 1-D

shock/turbulence interaction example in the subsequent sec-

tions. 2-D and 3-D examples are in progress and will be

reported in a forthcoming paper.

TEST CASES WITH PERIODIC BOUNDARY CONDI-

TIONS

This section shows the performance of the tenth-order

spatial scheme for several test cases with periodic boundary

conditions. Note that in this case, SBP boundary operators

are not needed.

The seven-point sixth-order accurate centered difference

operator with an eighth-order numerical dissipation, is de-

noted by D06AD8. The eleven-point tenth-order accurate

centered difference operator with twelfth-order numerical

dissipation is denoted by D10AD12. Similarly, D08AD10

denotes the eighth-order centered difference operator tenth-

order numerical dissipation. These operators are used for

the spatial derivatives in the Euler equations. The classi-

cal fourth order accurate Runge-Kutta method is used for

the time integration. In all of the examples, different time

step sizes that are below the CFL limit were used. However,

their results indicate no significant difference in the accu-

racy, indicating that the error of the spatial discretization

dominates the temporal error.

The first example is the same isentropic vortex convec-

tion problem considered in Yee et al. (1999) and Sjogreen

and Yee (2002). The computational domain is [0, 18]×[0, 18].
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Figure 1: L2 norm of the error in the density after the vortex

has convected one period as function of the grid spacing, h.

Sixth-order method (solid) and tenth-order method (dash).

The initial data is

ρ(0, x, y) =

(

1−
β2(γ − 1)

8γπ2
e1−r

2
)

1
γ−1

(1)

u(0, x, y) = u∞ −
β

2π
(y − y0)e

(1−r2)/2 (2)

v(0, x, y) = v∞ +
β

2π
(x− x0)e

(1−r2)/2 (3)

p(0, x, y) = ρ(0, x, y)γ (4)

where ρ is the density, u is the velocity in the x-direction, v is

the velocity in the y-direction, and p is the pressure. γ is the

ratio of specific heats. Here, γ = 1.4, β = 5, u∞ = 1, and

v∞ = 0. r2 = (x−x0)2+(y−y0)2, where the initial center of

the vortex is (x0, y0) = (9, 9). The boundary conditions are

periodic in both directions. The exact solution consists of a

translation of the initial data with the free stream velocity.

Fig. 1 displays the L2 error in the density after one com-

putational domain period of time integration with D06AD8

(solid line) and D10AD12 (dashed line) for four uniform

grids with spacings h = 0.5, 0.25, 0.125, and 0.0625. We

infer from Fig. 1 that the error of the 10th order method

is always smaller than the error of the sixth-order method,

but that the errors of both methods converge slower than

the formal order of accuracy for the first two refinements.

At the last refinement, the results are closer to the expected

convergence rate. The error of the sixth-order method de-

creases by a factor 69, when we refine from h = 0.125 to

h = 0.0625. The corresponding decrease of the error in the

tenth-order method is a factor 692. The reduction of the

error between the coarsest grids is slow because the compu-

tation is under resolved for h larger than 0.25. The highest

significant frequencies are not resolved with any points per

wavelength; points per wavelength results become meaning-

less. Computations without the added numerical dissipation

are also stable. However, spurious oscillations due to nonlin-

ear effect of the governing equations prevent the convection

of the vortex to advance to a higher number of periods. See

Sjögreen and Yee (2002) and Yee and Sjögreen (2002) for

the behavior of central schemes with or without the AD8

and AD10 terms for longer time integration of this vortex

convection problem.

In the second example we solve the 3-D Euler equations

of gas dynamics with γ = 5/3 and with initial data

ρ(0, x, y, z) = 1 (5)

u(0, x, y, z) = sin(x) cos(y) cos(z) (6)

v(0, x, y, z) = − cos(x) sin(y) cos(z) (7)

w(0, x, y, z) = 0 (8)

p(0, x, y, z) = 100 +
1

16
((cos(2z) + 2)(cos(2x) + cos(2y))− 2)

(9)

on the computational domain [0, 2π]× [0, 2π]× [0, 2π]. Here

ρ is the density, p is the pressure, and u, v, w are the three

velocity components. This is known as a Taylor-Green vor-

tex. The computation stops at a total time equal to 10.

The boundary conditions are periodic. The initial data is

smooth, but the scales in the solution become smaller and

smaller with time. The enstrophy (the square of the L2 norm

of the curl of the velocity) is often used as a measure of the

content of small scales in the solution. For this problem, the

added numerical dissipation AD8, AD10 and AD12 for the

corresponding centered schemes are necessary for a stable

time stepping.

In Fig. 2 we plot the enstrophy (normalized to 1 at

time 0) as function of time for the sixth-order (dot), the

eighth-order (dash) and the tenth-order (dash-dot) schemes,

computed on a grid with 64 × 64 × 64 grid points. We also

plot the enstrophy obtained from the semi-analytical formu-

las given in Brachet et al. (1983), This “exact” solution is

valid for times less than approximately 4 and we only plot it

up to that time. The computed enstrophies agree well with

the semi-analytical formula. For large times there is no accu-

racy, but Fig. 2 shows that the schemes with less numerical

dissipation give higher enstrophy values. This means that

the method with the highest order of accuracy has the largest

small-scale content. The AD8, AD10 and AD12 dissipation

coefficients used are 0.0001.

In Fig. 3, we show the same comparison as in Fig. 2, but

for computations on a grid with 144×144×144 points using

the same numerical dissipation coefficient of 0.0001 (except

for the sixth-order scheme). The maximum enstrophy now

is higher (note different scaling) for all methods, reflecting

the fact that higher frequencies can be supported on a finer

grid. For the same dissipation coefficient, 0.0001, the sixth-

order central scheme is convecting extremely slow of an un-

acceptable rate, thus a 10 times larger numerical dissipation

coefficient, 0.001 was used for AD8.

The same computations using comparable dissipation co-

efficients for AD8, AD10 and AD12 are shown in Fig. 4

and Fig. 5/. That is the strengths of the numerical dissipa-

tion operators are set to be equivalent for all three methods.

The solution of the tenth-order scheme appears to follow the

semi-analytical solution closer. It is clear from Fig. 4 that

the tenth-order method is better at supporting the small

scales, because the enstrophy is higher for large times. In

this case, the tenth-order central scheme is more accurate

than its eighth-order and sixth-order counterparts.

Both the above examples show error reduction with

the tenth-order accurate scheme for problems with periodic

boundary conditions. In order to extend the tenth-order

computations to problems with non-periodic boundaries,

special stable boundary operators are needed. We are par-

ticularly interested in deriving energy stable SBP boundary

operators for the tenth-order interior operator. One such

derivation is presented next.
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Figure 2: Enstrophy vs time for the Talyor-Green vortex.

643 grid points for dissipation coefficient of AD8, AD10 and

AD12 equal to 0.0001. Sixth-order method (dot), eighth-

order method (dash), tenth-order method (dash-dot), and

semi-analytical (solid).
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Figure 3: Enstrophy vs time for the Talyor-Green vortex.

1443 grid points. Sixth-order method (dot), eighth-order

method (dash), tenth-order method (dash-dot), and semi-

analytical (solid).

SBP DIFFERENCE OPERATORS

Here, we follow Strand (1994) to determine boundary

modification for tenth-order accurate interior approxima-

tions of d/dx. We consider a uniform grid xj , j = 1, 2, 3, . . .

with grid spacing h = xj+1 − xj . The difference operator

approximating du(xj)/dx is of the form

hD̃uj =

{

∑s
k=1 qj,kuk j = 1, 2, . . . , r

∑q
k=−q αkuj+k j = r + 1, r + 2, . . .

.

The interior approximation is defined by the coefficients αk.

The 2qth order accurate interior approximation has α−k =

−αk and is used for j > r, where r is an arbitrary number

> q. The boundary modified operator acts at the points

j = 1, . . . , r, and is defined by the coefficients qj,k. The

SBP boundary operators satisfy the identity

(u,Dv)h = −(Du, v)h − u1v1
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Figure 4: Enstrophy vs time for the Talyor-Green vortex.

643 grid points using relative dissipation coefficient strength.

Sixth-order method with AD8 coeff. = 0.0016 (dot), Eighth-

order method with AD10 coeff. = 0.0004 (dash), tenth-order

method with AD12 coeff. = 0.0001 (dash-dot), and semi-

analytical (solid).

0 2 4 6 8 10
0

10

20

30

40

50

T

E
ns

tr
op

hy

128x128x128 Grid Points

D10AD12
D08AD10
D06AD08
Exact

Figure 5: Enstrophy vs time for the Talyor-Green vortex.

643 grid points using relative dissipation coefficient strength.

Sixth-order method with AD8 coeff. = 0.0016 (dot), Eighth-

order method with AD10 coeff. = 0.0004 (dash), tenth-order

method with AD12 coeff. = 0.0001 (dash-dot), and semi-

analytical (solid).

for all grid functions u and v where (u, v)h is a discrete scalar

product. This makes it possible to prove estimates for the

difference approximation.

We write the difference operator on block matrix form as

hD̃ =

(

Q1 Q2

−CT D

)

,

where Q = (Q1 Q2) is the matrix formed by the coefficients

qj,k. Q1 is of size r × r. C and D are determined by the

interior discretization. When the order of accuracy is 2q, D

is of the form

D = diag(−αq ,−αq−1, . . . ,−α1, 0, α1, . . . , αq).

The matrix C holds the part of the interior discretization



that extends outside the first rows of D, i.e.,

−CT =



















0 . . . 0 −αq −αq−1 . . . −α1

0 . . . 0 0 −αq . . . −α2

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . −αq
0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .



















Q2 and C are of size r × (s − r). s can be considered arbi-

trarily large with the rows of Q2 and C padded with zeros.

Taylor expansion gives the equations for pth order of ac-

curacy at the boundary,

QE = F (10)

where (E)i,j = (i−1)j−1 and (F )i,j = (j−1)(i−1)j−2 and

where any occurrence of 00 is interpreted as 1. The sizes of

E and F are s × (p + 1) and r × (p + 1) respectively. We

partition E as E =

(

E1

E2

)

with E1 of size r × (p + 1) and

write (10) as

Q1E1 +Q2E2 = F. (11)

The summation by parts property is equivalent with

(u, D̃u)H = −
1

2
u2
1

where the weighted scalar product is given by (u, v)H =

(uI)THvI + (uII)T vII , for a positive definite r × r matrix

H. We define uI = (u1, . . . , ur) and uII = (ur+1, ur+2, . . .).

The summation by parts property is equivalent with

HQ1 = B1 +B2 (12)

HQ2 = C (13)

where B1 is the matrix with −1/2 as (1,1) element and

all other elements equal to zero. B2 is an arbitrary anti-

symmetric matrix. The summation by parts boundary op-

erators are found by solving (11), (12), and (13) for Q1, Q2,

and H.

To solve these equations, we multiply (11) by H and use

(12) and (13) to substitute HQ1 and HQ2. This results in

the equation

B2E1 +B1E1 + CE2 = HF (14)

for B2. We multiply (14) by ET
1 and use the anti-symmetry

(ET
1 B2E1)T = −ET

1 B2E1 to obtain the solvability condi-

tion

FTHE1 +ET
1 HF = 2ET

1 B1E1 +ET
1 CE2 +ET

2 CTE1 , M,

(15)

which is a linear system of (p + 1)2 equations for the r2

unknown elements of H. Note that M only depends on the

interior discretization and on r. It was shown in Strand

(1994) that (15) can be solved in the following cases

• p is odd, the interior discretization is p + 1th order

accurate, and r = p + 1, i.e., the number of equations

and unknowns are equal in (15). H is called a full

norm.

• p is odd, the interior discretization is p + 1th order

accurate, r = p+ 2, and all elements, except the (1,1)

element, on the first row of H are equal to zero. H is

called a restricted full norm.

Table 1: Summary of known SBP operators.

Norm type B-order p # param. Ref.

full 3 2 Strand (1994)

full 5 3 Mattson (2003)

full 7 4 Mattson (2003)

restricted 3 3 Strand (1994)

diagonal 1 0 Strand (1994)

diagonal 2 0 Strand (1994)

diagonal 3 1 Strand (1994)

diagonal 4 3 Strand (1994)

• H is diagonal, the interior discretization is 2pth order

accurate, and r = 2p. H is called a diagonal norm.

Note that the existence of a solution H is not enough; in

order for H to be a norm, H has to be positive definite as

well. It was shown in Strand (1994) that a positive definite

H can be found if r is made sufficiently large, but there is

no guarantee that optimal properties r = p + 1, r = p + 2,

and r = 2p (for the three above cases) can be satisfied with

H positive definite.

Energy estimates for PDEs obtained in one space di-

mension with the full norm operator do not generalize to

two space dimensions, because the full norms in the x- and

y-directions do not, in general, commute. With the diag-

onal norm, these operators do commute and estimates can

be carried over from one dimensional problems to multidi-

mensional problems. However, our experience from practical

computations is that the full norm operators also perform

well in multi dimensions.

After having solved (15) for H, we insert H into (14) and

solve for B2. (14) is usually underdetermined and we obtain

a solution that depends on a number of parameters. With H

and B2 known, (12) and (13) give Q1 = H−1(B1 +B2) and

Q2 = H−1C. The SBP boundary operator is determined.

Table 1 summarizes a few known SBP operators. The second

column shows the boundary order p and the third column

displays the number of free parameters in the operator.

Olsson (1992) derived the same operators as Strand

(1994). Mattson (2003) gave one operator, not the para-

metric dependency.

The freedom given by the undetermined parameters can

be used, e.g., to determine an operator with a minimal spec-

tral radius. This maximizes the time step if the operator is

used in an explicit time stepping scheme.

SBP Operators with Tenth-Order Accuracy in the Interior

The tenth-order accurate centered finite difference oper-

ator has the coefficients

α1 = 5/6 α2 = −5/21 α3 = 5/84

α4 = −5/504 α5 = 1/1260. (16)

We use this as the interior discretization and solve (15) for

a diagonal norm with p = 5, r = 10.” It turns out that

the solution has negative elements, i.e., H is not positive

definite. Similarly, solving for a diagonal norm SBP operator

with (p = 6, r = 12), (p = 7, r = 14), and (p = 8, r = 16)

all give non-positive definite Hs. We use this as the interior

discretization and solve (15) with p = 5, r = 10. It turns out

that the solution has negative elements, i.e., H is not positive

definite. Similarly, the pairs (p = 6, r = 12), (p = 7, r = 14),



and (p = 8, r = 16) all give non-positive definite H’s. We

conjecture that there are no diagonal norms as defined in

Strand (1994) for p > 4.

Instead we take p = 5 and r = 11 to obtain an H that

depends on one parameter. For a certain interval of the

parameter, H is positive definite. We fix this parameter in

the middle of the interval of positive definiteness to obtain

the norm

H = diag(62715991/217728000, 10645069/6773760,

922613/6350400, 11862631/6350400,

678527/1036800, 21626453/36288000, 2887/1620,

678527/1814400, 130522139/101606400,

282939397/304819200, 64002913/63504000). (17)

The SBP boundary operator, Q, thus obtained depends on

10 free parameters through the solution of (14). Setting

random values of these parameters typically leads to an op-

erator with a spectral radius of size 105, which is useless for

any practical purpose. To overcome this problem, we used

the fminsearch routine in Matlab to minimize the spectral

radius of the difference operator with respect to the free pa-

rameters. The boundary operator obtained is presented in

the Appendix. It has spectral radius 50, which is 20 times

larger than the size of the interior operator, but it is small

enough to enable some preliminary computations. The min-

imization problem is extremely ill-conditioned, and we have

probably not reached the global minimum. This is a topic

of continued investigation.

TEST CASE WITH NON-PERIODIC BOUNDARIES

The first test case is the 1-D compressible inviscid shock-

turbulence interaction problem with initial data consisting of

a shock propagating into an oscillatory density. The initial

data is given by

(ρL, uL, pL) = (3.857143, 2.629369, 10.33333) (18)

to the left of a shock located at x = −4, and

(ρR, uR, pR) = (1 + 0.2 sin(5x), 0, 1) (19)

to the right of the shock. The problem is solved on the

domain [0, 5] with the boundary modified operator applied

at all boundary points.

Fig. 6 shows the solution computed with the tenth-

order spatial base scheme together with a nonlinear shock-

capturing filter obtained as the dissipative portion of a fifth-

order WENO scheme (Yee and Sjögreen, 1999, 2002, 2006).

The computation used a uniform grid with 400 points. The

solution is plotted in red and the solid black line is the ref-

erence solution by the standard fifth-order WENO scheme

using 4000 grid points. The accuracy is almost indistinguish-

able from the SBP sixth-order and SBP eighth-order cen-

tered schemes computations. One major shortcoming of the

SBP tenth-order scheme is that it has a very restricted CFL

limit. It is an order of magnitude lower than its sixth-order

and eighth-order counterparts. The present SBP bound-

ary operators for the tenth-order central interior scheme is

also used to simulate many 2-D and 3-D multiscale prob-

lems containing strong shock waves. Results indicated that

there is no dramatic gain in accuracy among sixth-order,

eighth-order and tenth-order central base scheme under the

framework of our high order filter approach. Perhaps an im-

proved filter strategy is needed for this type of multiscale
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Figure 6: One dimensional shock-turbulence problem. So-

lution at time 1.6 computed by the new tenth-order SBP

scheme with a fifth-order WENO based nonlinear filter (Yee

and Sjögreen (2006)). Computed solution (red) and refer-

ence solution (black).

physics. The results will be reported in detail in a future

publication.

SUMMARY

For coarse grid with periodic boundary conditions, the

tenth-order central differencing is more accurate than lower

order schemes. For the non-periodic boundary case, how-

ever, the CFL limit of the tenth-order scheme is an or-

der of magnitude lower than the sixth-order and eighth-

order counterparts. We have presented a fifth-order SBP

boundary modification for the tenth-order interior central

scheme. However, increasing the interior accuracy higher

than eighth-order in the derivation of SBP operators lead

to new difficulties. First it is non-trivial to make the norm

matrices computed by the standard procedures positive def-

inite. Second, the computed boundary operators usually

have very large spectral radius. In the very high order case,

both the norm matrices and the boundary operators depend

on a large number of free parameters. In order to derive

useful very high order summation by parts operators, it is

necessary to use advanced optimization methods to select

these parameters.
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Sjögreen, B., and Yee, H.C., 2002, “Analysis of High

Order Difference Methods for Multiscale Complex Com-

pressible Flow”, In Proceedings of the HYP2002 conference,

Pasadena, CA, March 25-29.
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APPENDIX

Here, we give the optimized boundary operator matrix

Q for SBP diagonal norm operator with p = and r = 11.

The matrix has size 11×16. The first six columns are

−1.735825 0.770205 5.598258 −5.303959 −5.536114 8.779473
−0.141173 0.000000 −2.878976 4.617511 1.976732 −5.979838
−11.099373 31.141411 0.000000 −66.660594 24.507405 76.519010
0.817870 −3.884603 5.184510 0.000000 −4.617298 −2.222004
2.436671 −4.746727 −5.440561 13.179402 0.000000 3.250455
−4.243363 15.768336 −18.653725 6.964703 −3.569390 0.000000
0.032496 −0.934761 4.439107 −8.991291 9.017526 −4.486641
0.665259 −3.113476 4.933463 −1.255448 −5.426069 7.335731
1.219606 −3.744699 −0.311858 13.619471 −18.761465 8.494855
−1.663525 5.798644 −2.675419 −13.658515 22.817263 −11.670627
0.408393 −1.510655 1.024657 2.833466 −5.397210 2.924868

columns seven to 11 are

−0.201045 −0.863696 −5.438996 5.360636 −1.428936 0.000000
1.060019 0.740902 3.060986 −3.424987 0.968825 0.000000
−54.451379 −12.698941 2.757407 17.093239 −7.108185 0.000000
8.577760 0.251335 −9.365768 6.786950 −1.528751 0.000000
−24.555401 3.100611 36.826269 −32.362533 8.311814 0.000000
13.416241 −4.603151 −18.310359 18.177034 −4.946326 0.000000
0.000000 0.908621 0.088411 −0.060118 −0.013795 0.000445
−4.329925 0.000000 1.909337 −0.954379 0.259912 −0.026528
−0.122652 −0.555845 0.000000 −0.049806 0.173160 0.046337
0.115421 0.384507 0.068928 0.000000 0.685535 −0.256507
0.024392 −0.096441 −0.220705 −0.631367 0.000000 0.826837

and columns 12 to 16 are

0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000445 0.000000 0.000000 0.000000 0.000000
−0.026528 0.002122 0.000000 0.000000 0.000000
0.046337 −0.007723 0.000618 0.000000 0.000000
−0.256507 0.064127 −0.010688 0.000855 0.000000
0.826837 −0.236239 0.059060 −0.009843 0.000787


